

Tilapya: TransLink API, in Python

[image: _images/tilapya.svg]
 [https://pypi.org/project/tilapya][image: _images/tilapya1.svg]
 [https://pypi.python.org/pypi/tilapya][image: _images/tilapya2.svg]
 [https://pypi.python.org/pypi/tilapya][image: _images/tilapya3.svg]
 [https://travis-ci.org/carsonyl/tilapya][image: _images/8ea4f3bbbe211c8e4f6dfbcd3ebeb9bdd9f55d9f.svg]
 [https://tilapya.readthedocs.io/en/latest/?badge=latest]Tilapya is a Python wrapper around the TransLink Open API [https://developer.translink.ca/],
which provides real-time transit information for the Metro Vancouver region.

Tilapya has three interfaces which correspond directly to components of the TransLink Open API:

	RTTI: Real-Time Transit Information

	RTDS: Regional Traffic Data System

	GTFSRT: GTFS-realtime feeds

Tilapya is more than a thin wrapper around the underlying REST APIs.
Where possible, it smooths over some inconvenient return values,
and guarantees a consistent schema in returned errors and responses.

Installation

Install Tilapya using pip [https://pip.pypa.io]:

$ pip install tilapya

The source is also available on GitHub [https://github.com/carsonyl/tilapya].

Getting started

Use of the TransLink Open API, and thus Tilapya, requires an API key.
If you don’t already have an API key, you can get one by registering for an account at
https://developer.translink.ca/Account/Register.

Tilapya’s documentation is at http://tilapya.readthedocs.io.
Tilapya’s API docs contain examples for common operations.

Documentation

	Real-Time Transit Information

	GTFS-realtime

	Error handling

	Testing

	History

License

Copyright 2018 Carson Lam

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Indices and tables

	Index

	Module Index

	Search Page

Real-Time Transit Information

Tilapya wrapper around TransLink’s Real-Time Transit Information (RTTI) API.

Note

This API is limited to real-time information for buses.
In addition, some routes and vehicles may not be available.
Buses that are not in service are not exposed by the API.

See also

TransLink’s RTTI API reference [https://developer.translink.ca/ServicesRtti/ApiReference].
Much of it is replicated here for convenience.
However, the docs here reflect Tilapya-specific behaviour.

Usage examples

Find the name of bus stop 53095, and whether it’s wheelchair-accessible.

 >>> from tilapya import RTTI
 >>> api = RTTI('my key')
 >>> stop = api.stop('53095')
 >>> stop.Name
 'WB DOVER ST FS ROYAL OAK AVE'
 >>> stop.WheelchairAccess
 False

Get all the route map KML links for bus route 324.

 >>> route = api.route('324')
 >>> [pattern.RouteMap.Href for pattern in route.Patterns]
 ['http://nb.translink.ca/geodata/trip/324-NB1.kmz', 'http://nb.translink.ca/geodata/trip/324-NB1L.kmz', 'http://nb.translink.ca/geodata/trip/324-SB1.kmz']

Find the last reported route and position of bus 2543.

 >>> bus = api.bus('2543')
 >>> f'{bus.RouteNo} {bus.Destination} ({bus.Direction})'
 '020 VICTORIA (SOUTH)'
 >>> bus.Latitude, bus.Longitude
 (49.2805, -123.11725)
 >>> bus.RecordedTime.isoformat()
 '2018-02-19T22:07:57-08:00'

Get the next two predicted (or scheduled) arrival times for the 502 bus at bus stop 55070.

 >>> est = api.stop_estimates('55070', count=2, route_number='502')[0]
 >>> [f'{sked.ExpectedLeaveTime.isoformat()} - {est.RouteNo} {sked.Destination}' for sked in est.Schedules]
 ['2018-02-19T22:30:00-08:00 - 502 LANGLEY CTR', '2018-02-19T22:58:00-08:00 - 502 LANGLEY CTR']

API reference

	
class tilapya.RTTI(api_key, session=None)

	The wrapper around TransLink’s Real-Time Transit Information (RTTI) API.

	Parameters

	
	api_key – TransLink API key.

	session (requests.Session) – Session to use, instead of the default.

	
bus(bus_number)

	Get a bus by its bus vehicle number.

	Parameters

	bus_number – A vehicle id.
It is not possible to get a bus that is not currently in service.

Note

This endpoint erroneously rejects 5-digit bus numbers.

	Return type

	Bus

	
buses(stop_number=None, route_number=None)

	Retrieve vehicle information of all or a filtered set of buses.

	Parameters

	
	stop_number – If present, will search for buses for stop id specified.

	route_number – If present, will search for stops specific to route.

	Return type

	list[Bus]

	
route(route_number)

	Get a route by its route number.

	Parameters

	route_number – A bus route number.

	Return type

	Route

	
routes(stop_number=None)

	Get routes.

Note

This endpoint may intermittently and incorrectly return
error code 4014 (no routes for specified stop).

	Parameters

	stop_number – If present, will search for routes passing through this stop.

Note

Though it’s implied that leaving this unspecified will return all routes,
in practice, this parameter is required.

	Return type

	list[Route]

	
status(service='all')

	Gets the bus location and real-time schedule information update status.

	Parameters

	service – A service name.

	location for bus location information,

	schedule for real-time schedule information

	all for both services

	Return type

	list[Status]

	
stop(stop_number)

	Get a bus stop by bus stop number.

	Parameters

	stop_number – 5-digit bus stop number.

	Return type

	Stop

	
stop_estimates(stop_number, count=None, timeframe=None, route_number=None)

	Gets the next bus estimates for a particular stop. Returns schedule data if estimates are not available.

	Parameters

	
	stop_number – A five-digit stop number.

	count (int) – The number of buses to return. Default 6.

	timeframe (int) – The search time frame in minutes. Default 120.

	route_number – If present, will search for stops specific to route.

	Returns

	A list of StopEstimate. Appears to be grouped by
route, destination, and direction (not documented).

	Return type

	list[StopEstimate]

	
stops(lat, long, radius_m=None, route_number=None)

	Search for stops around a certain point.

	Parameters

	
	lat (float) – Latitude.

	long (float) – Longitude.

	radius_m (int) – Search this radius for stops. Default 500. Maximum 2000.

	route_number – Search for stops served by this route.

	Return type

	list[Stop]

Response objects

These returned objects are read-only. Do not attempt to modify their fields.

	
class tilapya.rtti.Stop

	Stops are locations where buses provide scheduled service.

	Variables

	
	StopNo (int) – The 5-digit stop number.

	Name – The stop name.

	BayNo – The bay number, if applicable.

	City – The city in which the stop is located.

	OnStreet – The street name the stop is located on.

	AtStreet – The intersecting street of the stop.

	Latitude (float) – The latitude of the stop.

	Longitude (float) – The longitude of the stop.

	WheelchairAccess (bool) – Specifies wheelchair accessible stop.

	Distance – Distance away from the search location.

	Routes (list[Route]) – The list of routes that the stop services.

Create new instance of Stop(StopNo, Name, BayNo, City, OnStreet, AtStreet, Latitude, Longitude, WheelchairAccess, Distance, Routes)

	
class tilapya.rtti.StopEstimate

	Bus arrival estimates for a route at a stop.

	Variables

	
	RouteNo – The bus route number.

	RouteName – The bus route name.

	Direction – The direction of the route at the specific stop.

	RouteMap (RouteMap) – The element containing the route map information.

	Schedules (list[Schedule]) – The element containing the list of schedules.

Create new instance of StopEstimate(RouteNo, RouteName, Direction, RouteMap, Schedules)

	
class tilapya.rtti.RouteMap

	Bus route map.

	Variables

	href – The location of the route map file in KMZ format.

Create new instance of RouteMap(Href,)

	
class tilapya.rtti.Schedule

	A piece of real-time or scheduled arrival time information for a single bus.

	Variables

	
	Pattern – The pattern of the specific trip.

	Destination – The destination of the trip.

	ExpectedLeaveTime (datetime) – The expected departure time of the trip at the specific stop.
The original value is something like “05:20pm 2018-02-18”.
This is converted to an absolute datetime with time zone.
Seconds are always 0.

	ExpectedCountDown (int) – The expected departure time in minutes.

	ScheduleStatus – The status of the trip.

	* indicates scheduled time

	- indicates delay

	+ indicates bus is running ahead of schedule

	AddedTrip (bool) – Indicates if trip is added.

	CancelledTrip (bool) – Indicates if trip is cancelled.

	CancelledStop (bool) – Indicates if stop is cancelled.

	AddedTrip – Indicates if trip is added.

	AddedStop (bool) – Indicates if stop is added.

	LastUpdate (datetime) – The last updated time of the trip.
The original value is something like “05:20:30 pm”.
This is converted to an absolute datetime with time zone.

Create new instance of Schedule(Pattern, Destination, ExpectedLeaveTime, ExpectedCountdown, ScheduleStatus, CancelledTrip, CancelledStop, AddedTrip, AddedStop, LastUpdate)

	
class tilapya.rtti.Bus

	Information about a bus.

	Variables

	
	VehicleNo – The vehicle number of the bus.

	TripId (int) – The id of the trip the bus currently running.

	RouteNo – The route number of the vehicle.

	Direction – The direction of the trip.

	Destination – The destination headsign of the trip.
This field is not in the RTTI API documentation.

	Pattern – The pattern of the trip.

	Latitude (float) – The latitude of the vehicle location.

	Longitude (float) – The longitude of the vehicle location.

	RecordedTime (datetime) – The recorded time of the last location of the vehicle.
The original value is something like “05:20:30 pm”.
This is converted to an absolute datetime with time zone.

	RouteMap (RouteMap) – The element containing the route map information.

Create new instance of Bus(VehicleNo, TripId, RouteNo, Direction, Destination, Pattern, Latitude, Longitude, RecordedTime, RouteMap)

	
class tilapya.rtti.Route

	Routes are a sequenced pattern of service.

	Variables

	
	RouteNo – The bus route number.

	Name – The name of the route.

	OperatingCompany – The operating company of the route.

	patterns (list[Pattern]) – The list of patterns for the route.

Create new instance of Route(RouteNo, Name, OperatingCompany, Patterns)

	
class tilapya.rtti.Pattern

	A route trip pattern.

	Variables

	
	PatternNo – The pattern number.

	Destination – The destination of the pattern.

	RouteMap (RouteMap) – The element containing the route map information.

	Direction – The direction of the pattern.

Create new instance of Pattern(PatternNo, Destination, RouteMap, Direction)

	
class tilapya.rtti.Status

	Status info for a service within the RTTI API.

	Variables

	
	name – The name of the service (“Location” or “Schedule”)

	value – The status of the service (“Online” or “Offline”)

Create new instance of Status(Name, Value)

GTFS-realtime

GTFS-realtime is a specification for sharing real-time transit information.
It’s primarily ingested by Google in order to power transit information within Google Maps.

See also

TransLink’s GTFS-realtime API reference [https://developer.translink.ca/ServicesGtfs/ApiReference].
Much of it is replicated here for convenience.
However, the docs here reflect Tilapya-specific behaviour.

Usage example

Request the real-time positions feed.

 >>> from tilapya import GTFSRT
 >>> api = GTFSRT('my key')
 >>> api.position()
 <Response [200]>

The protobuf data in response.content can then be deserialized.

API reference

	
class tilapya.GTFSRT(api_key, session=None)

	The wrapper around TransLink’s endpoints for GTFS-realtime datasets.

	Parameters

	
	api_key – TransLink API key.

	session (requests.Session) – Session to use, instead of the default.

	
position()

	Request the position feed.

	Returns

	The response. The raw protobuf data is in content.

	Return type

	requests.Response

	
service_alerts()

	Request the service alerts feed.

	Returns

	The response. The raw protobuf data is in content.

	Return type

	requests.Response

	
trip_updates()

	Request the trip updates feed.

	Returns

	The response. The raw protobuf data is in content.

	Return type

	requests.Response

Error handling

If an error response is received from the TransLink Open API,
tilapya.TransLinkAPIError is raised.
This class parses the error body and exposes its values as members.

	
class tilapya.TransLinkAPIError(response)

	An error response from the TransLink API.

	Variables

	
	code – API error code. Only applies to the RTTI API.

	message – Message from the error response.
Empty if the response body is invalid or empty.

	request – The request that led to the error response.

	response – The original response.

	
description

	The documented description of the error code, if any.

If there was a problem deserializing the response according to the expected schema,
marshmallow.exceptions.ValidationError is raised from
the marshmallow [https://marshmallow.readthedocs.io] library.
This should not occur unless the underlying API changes significantly.

Testing

Tilapya is thoroughly tested, with the goal of verifying both Tilapya and the Translink Open API.

Tests are written using pytest [https://docs.pytest.org], and are in the tests directory.

For performance and reproducibility, requests and responses for tests are
cached using vcrpy [https://vcrpy.readthedocs.io]. This info is stored in tests/cassettes.

Running the tests

To run the tests, an API key for the TransLink Open API must be provided in
an environment variable named TRANSLINK_API_KEY.

Ensure you have Tilapya’s test dependencies:

> pipenv install --dev

Then, to run the tests:

> pipenv run py.test tests

The use of prerecorded responses can be configured using --vcr-record-mode.
See pytest-vcr [http://pytest-vcr.readthedocs.io/en/latest/configuration/#-vcr-record-mode] docs for details.

Testing strategy

Generally, Tilapya’s tests are written with two goals:

	Coverage of Tiliapya’s own Python code

	Coverage of the TransLink Open API’s documented and undocumented error states

HTTP status codes are usually ignored, as they have no consistent semantics.

History

1.0.0 (2019-06-23)

	Drop support for Python 2.7 and 3.4.

	Remove RTDS API. It was removed upstream.

	Switch GTFS-RT to v2 endpoints. v1 was removed upstream.

	Add service alerts endpoint to GTFS-RT. It was added to v2 upstream.

0.2.0 (2019-02-03)

	Require Marshmallow >= 3.0.0rc1, to fix dependency resolution problem.

	Require Requests >= 2.20.0.

	Replace API for GTFS-RT.

0.1.0 (2018-02-19)

	Initial version.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tilapya	

 	
 	
 tilapya.gtfsrt	

 	
 	
 tilapya.rtti	

Index

 B
 | D
 | G
 | P
 | R
 | S
 | T

B

 	
 	Bus (class in tilapya.rtti)

 	
 	bus() (tilapya.RTTI method)

 	buses() (tilapya.RTTI method)

D

 	
 	description (tilapya.TransLinkAPIError attribute)

G

 	
 	GTFSRT (class in tilapya)

P

 	
 	Pattern (class in tilapya.rtti)

 	
 	position() (tilapya.GTFSRT method)

R

 	
 	Route (class in tilapya.rtti)

 	route() (tilapya.RTTI method)

 	
 	RouteMap (class in tilapya.rtti)

 	routes() (tilapya.RTTI method)

 	RTTI (class in tilapya)

S

 	
 	Schedule (class in tilapya.rtti)

 	service_alerts() (tilapya.GTFSRT method)

 	Status (class in tilapya.rtti)

 	status() (tilapya.RTTI method)

 	
 	Stop (class in tilapya.rtti)

 	stop() (tilapya.RTTI method)

 	stop_estimates() (tilapya.RTTI method)

 	StopEstimate (class in tilapya.rtti)

 	stops() (tilapya.RTTI method)

T

 	
 	tilapya.gtfsrt (module)

 	tilapya.rtti (module)

 	
 	TransLinkAPIError (class in tilapya)

 	trip_updates() (tilapya.GTFSRT method)

JSON response samples

	RTTI

	Stop

	Buses

RTTI

Stop

Buses

GET http://api.translink.ca/rttiapi/v1/buses

[
 {
 "VehicleNo": "11303",
 "TripId": 9287793,
 "RouteNo": "252",
 "Direction": "EAST",
 "Destination": "PARK ROYAL - ONLY",
 "Pattern": "EB1NEW",
 "Latitude": 49.331583,
 "Longitude": -123.15765,
 "RecordedTime": "05:20:01 pm",
 "RouteMap": {
 "Href": "http://nb.translink.ca/geodata/252.kmz"
 }
 },
 {
 "VehicleNo": "11304",
 "TripId": 9287801,
 "RouteNo": "252",
 "Direction": "WEST",
 "Destination": "INGLEWOOD",
 "Pattern": "WB1NEW",
 "Latitude": 49.331433,
 "Longitude": -123.147833,
 "RecordedTime": "05:20:29 pm",
 "RouteMap": {
 "Href": "http://nb.translink.ca/geodata/252.kmz"
 }
 },
]

GET http://api.translink.ca/rttiapi/v1/buses/2543

{
 "VehicleNo": "2543",
 "TripId": 9263935,
 "RouteNo": "020",
 "Direction": "SOUTH",
 "Destination": "VICTORIA",
 "Pattern": "SB1",
 "Latitude": 49.280983,
 "Longitude": -123.116517,
 "RecordedTime": "10:05:13 pm",
 "RouteMap": {
 "Href": "http://nb.translink.ca/geodata/020.kmz"
 }
}

Usage

To use Tilapia in a project:

import tilapia

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Tilapya: TransLink API, in Python

 		
 Real-Time Transit Information

 		
 Usage examples

 		
 API reference

 		
 Response objects

 		
 GTFS-realtime

 		
 Usage example

 		
 API reference

 		
 Error handling

 		
 Testing

 		
 Running the tests

 		
 Testing strategy

 		
 History

 		
 1.0.0 (2019-06-23)

 		
 0.2.0 (2019-02-03)

 		
 0.1.0 (2018-02-19)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

